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Abstract

Transformer-based models have gained much advance in recent years, becoming
one of the most important backbones in natural language processing. Recent work
shows that the attention mechanism in Transformer may not be necessary, both
convolutional neural networks and multi-layer perceptron based models have been
investigated as Transformer alternatives. In this paper, we consider a graph recur-
rent network for language model pre-training, which builds a graph structure for
each sequence with local token-level communications, together with a sentence-
level representation decoupled from other tokens. We find such architecture can
give comparable results against Transformer-based ones in both English and Chi-
nese language benchmarks. Moreover, instead of the quadratic complexity, our
model has linear complexity and performs more efficiently during inference.1

1 Introduction

Pre-trained models (PTMs) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] have been widely used in natural language
processing (NLP), benefiting a range of tasks including language understanding [11, 12], question
answering [13, 14], and dialogue [15, 16]. The dominant methods take the Transformer [17] ar-
chitecture, a heavily engineered model based on a self-attention network (SAN), it also showing
competitive performance in computation vision [18, 19, 20], speech [21], and biological [22] tasks.

Despite its success, Transformer typically suffers from quadratic time complexity [17], along with the
requirement of large computational resources and associated financial and environmental costs [23]. In
addition, recent studies show that the attention mechanism, which is the key ingredient of Transformer,
may not be necessary [24, 25, 26]. For example, Tay et al. [26] find that models learning synthetic
attention weights without token-token interactions also achieve competitive performance for certain
tasks. Therefore, investigation of Transformer alternatives is of both theoretical and practical interest.
To this end, various non-Transformer PTMs have recently been proposed [27, 28, 29, 30].

In this paper, we consider a graph neural network (GNN) [31] for language model pre-training. GNN
and its variants have been widely used in NLP tasks, including machine translation [32], information
extraction [33], and sentiment analysis [34]. For GNN language modeling, a key problem is how to
represent a sentence in a graph structure. From this perspective, ConvSeq2seq [35] can be regarded as
a graph convolutional network (GCN) [36] with node connections inside a local kernel. Transformer-
based models can be regarded as a graph attention network (GAT) [37] with a full node connection.
However, graph recurrent network (GRN) [38, 39] models have been relatively little considered.

We follow the structure of sentence-state LSTM (S-LSTM) [38], which represents a sentence using a
graph structure by treating each word as a node, together with a sentence state node. State transitions

1We release the code at https://github.com/ylwangy/slstm_pytorch.
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Type Models Basic Unit Complexity Parallel Parameter Sharing

LSTM-based Context2Vec [40] RNN O(n)
✗ ✗

ELMo [41] ✗ ✗

Transformer-based

GPT2 [1]

SAN O(n2)

✓ ✗
BERT [2] ✓ ✗

RoBERTa [3] ✓ ✗
XLNet [4] ✓ ✗

ALBERT [5] ✓ ✓
BART [6] ✓ ✗

T5 [7] ✓ ✗
DeBERTa [8] ✓ ✗

Others
DynamicConv [27] CNN O(n) ✓ ✗

gMLP [28] MLP O(n) ✓ ✗
Ours GRN O(n) ✓ ✓

Table 1: Overview of existing types of pre-trained models and our proposed model.

are performed recurrently to allow token nodes to exchange information with their neighbors and
the sentence-level node. Such architecture has shown advantages over vanilla bidirectional LSTM
in supervised text classification tasks. However, its potential for general-purpose language model
pre-training has not been fully exploited. We optimize the model by exploring the suitable architecture
design for pre-training, a comparison of our model and typical existing PTMs is shown in Table 1.

Experimental results show that our model can give a comparable performance on general language
understanding tasks for both English and Chinese languages. During inference, our model can gain
2∼3 times speedup or more for extra long sentences against Transformer-based models. To our
knowledge, we are the first to investigate a graph recurrent network for language model pre-training.

2 Model

The overall structure of our model is shown in Figure 1(a). Following S-LSTM [38], we treat each
sentence as a graph with token nodes and an external sentence state node. The node state is updated
in parallel according to the information received in each layer (or recurrent step).

We first transform each token wi into token embedding using the trainable lookup table E and the
position embedding lookup table P , the model input xi is constructed by xi = E(wi) + P (wi).
Then we initialize hidden states and hidden cells for each token node, the sentence-level node with
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where ∥ is concatenation operation, ξt−1
i , xi, gt−1 represent the inputs from previous local states,

token embedding and previous global states, respectively. In Eq. 1, we calculate multiple LSTM-style
gates to control the corresponding information flow. l̂ti , r̂
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Figure 1: Left: (a) Architecture of our model. We only show the update of token node hi and
sentence-level node g for brevity. Right: (b) Comparison with different model architectures.

the input gate and output gate, respectively. Layer normalization is used to control the distributions
of neurons in each gate. Wx, Ux, Vx, and bx (x ∈ {i, l, r, f, s, o, u}) are model parameters.

The sentence-level node gt takes the previous token state as inputs and is calculated by :
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where f̂ t
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g , ot is the output gate. Wx, Ux, and bx (x ∈ {g, f, o}) are model parameters. The generated

hidden states ht
i and gt are sent to the next layer, together with the memory state cti and ctg .

Figure 1(b) shows the ways of hidden states generations of our model and other architectures.
Different from CNN, we explicitly model sentence-level information as a feature for each token, which
provides global information. Compared with Transformer, the sentence-level node representation is
designed to be separated from other tokens. We make all the trainable parameters in Eq. 1 and Eq. 2
shared across GNN layers, which is similar to the parameters in LSTM along the sequence direction.
In our model, we update each token using its fixed local context together with a sentence-level
representation in each layer, making our model has O(n) complexity.

3 Experiments

3.1 Pre-training

Dataset. English models are trained using the latest Wikipedia and BookCorpus [42]. Chinese
models are trained using Wikipedia. The total amount of training data is on par with BERT [2] for
both languages.

Baselines. Strictly comparing the PTMs is difficult because of the different dataset processing,
training strategies, and environmental settings. As shown in Table 2, we consider the most related
and popular models with similar training corpus for comparison. For English, we use the published
RNN-based model (ELMo), compact version of BERT (DistilBERT), BERT, and recurrent version of
BERT (ALBERT). For Chinese, we add some BERT variants which use Chinese word segmentor for
whole word masking [44] or modify the masked token prediction as a correction target [46].

Settings. We pre-train our model with a batch size of 128 and a maximum length of 512 for 300k
steps, using Adam optimizer with learning rate lr=0.003, β1=0.9, β2=0.98, learning rate warmup
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Models (English) Pre-training Data Objective
ELMo [41] 1 Billion Word CLM
DistilBERT [43] Wiki+BooksCorpus BERT+KD
BERT-base [2] Wiki+BooksCorpus MLM+NSP
ALBERT-base [5] Wiki+BooksCorpus MLM+SOP
Models (Chinese) Data Objective
BERT-base [2] Wiki MLM+NSP
BERT-wwm [44] Wiki MLM+NSP
BERT-wwm-ext [44] Wiki+EXT MLM+NSP
RoBERTa-wwm [45] Wiki+CLUECorpus MLM
RoBERTa-wwm-ext [44] Wiki+EXT MLM
ALBERT-large [5] Wiki+EXT MLM+SOP
MacBERT [46] Wiki+EXT Mac+SOP

Table 2: Baseline models. CLM: casual language modeling. KD: knowledge distillation. SOP:
sentence order prediction. Mac: MLM as correction. wwm: whole word masking. ext: external
training data.
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Figure 2: Illustrations of fine-tuning BERT and our model on different tasks. Left: single sentence
tasks (e.g., sentiment analysis); Right: sentence pair tasks (e.g., natural language inference).

over the first 3,000 steps, and linear decay with 0.03. Both English and Chinese model has 10 layers,
and 1792 hidden size, where the total parameter size is 186M. We use 8 NVIDIA GeForce RTX 3090
GPUs for pre-training and it takes around 10 days. All the pre-training implementations are based on
FairSeq [47] framework.

3.2 Fine-tuning

Evaluating Benchmarks. For English tasks, we evaluate our pre-trained models on tasks in
GLUE [11], including linguistic acceptability (CoLA), sentiment analysis (SST), sentence pair
similarity (MRPC, QQP), and natural language inference (MNLI, QNLI, RTE).

For Chinese tasks, we evaluate on short and long text classification (TNEWS, IFLYTEK), keywords
matching (CSL) [48], question matching (LCQMC) [49], document classification (THUCNews) [50]
and sentiment analysis (ChnSentiCorp) [51].

Settings. Although our model architecture is different from most baselines, the fine-tuning strategy
for each task can be the same as BERT-style models. As shown in Figure 2, the output of the sentence
node g can be treated as the representation of [CLS] in BERT, which can be used for single sentence
classification tasks directly. For sentence pair classification tasks, we concatenated two sentences and
the target label is still predicted using the sentence node g in the last layer.

We use the official code from Huggingface [52] and CLUE [48] for reproducing the baseline and our
results without external data augmentation, we mainly tune the parameters with training epochs in {2,
3, 5, 10}, learning rate in {2e-5, 3e-5, 5e-5} and batch size in {16, 32, 64}.

3.3 Results

The main results on English and Chinese language understanding tasks are shown in Table 3. For
English tasks, our model gives an average score of 78.67, which is higher than the ELMo (69.65) and
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Model (English) CoLA SST2 MRPC QQP MNLI QNLI RTE Avg.

ELMo [41] 44.1 91.5 70.8 88.0 68.6 71.2 53.4 69.65
DistilBERT [43] 51.3 91.3 82.7 88.5 82.2 89.2 59.9 77.87
BERT-base [2] 56.3 91.7 83.5 89.6 84.0 90.9 65.3 80.18
ALBERT-base [5] 48.2 90.7 87.2 88.2 82.3 90.1 69.7 79.48
Ours 55.3 90.3 81.0 88.8 81.4 89.6 64.3 78.67

Model (Chinese) TNEWS IFLYTEK CSL LCQMC THUCNews ChnSentiCorp Avg.

BERT-base [2] 56.14 59.67 81.40 87.89 95.35 92.58 78.83
BERT-wwm [44] 56.47 59.71 81.23 87.93 95.28 93.00 78.93
BERT-wwm-ext† [44] 57.35 59.90 80.86 88.05 95.43 93.00 79.09
RoBERTa-wwm† [45] 57.29 59.29 81.16 88.41 95.19 93.25 79.09
RoBERTa-wwm-ext† [44] 57.09 60.71 81.80 88.68 95.69 93.33 79.55
ALBERT-large [5] 55.69 58.36 80.46 88.27 93.52 91.25 77.92
MacBERT† [46] 57.50 59.36 81.83 89.18 95.74 93.33 79.49
Ours 57.56 60.10 80.73 86.06 95.17 93.08 78.78

Table 3: Results on GLUE and CLUE benchmark dev sets. Results are reported by matthews
correlation (for CoLA) or accuracy (for others).

Model Settings #Param. Len=64 Len=256 Len=384 Len=512

ELMo 2 Bi-LSTM layer 93M 0.109 0.381 0.564 0.745
DistilBERT 6 encoder layers 66M 0.016 0.021 0.025 0.034
RoBERTa-base 12 encoder layers 125M 0.017 0.026 0.042 0.051
BART-base 6 encoder & decoder layers 140M 0.018 0.033 0.047 0.063

Ours

6 layers, 1280 hidden size 107M 0.010 (1.7×) 0.010 (2.6×) 0.010 (4.2×) 0.011 (4.6×)
12 layers, 1280 hidden size 107M 0.018 (0.9×) 0.018 (1.4×) 0.019 (2.2×) 0.019 (2.7×)
6 layers, 2048 hidden size 238M 0.011 (1.5×) 0.011 (2.4×) 0.012 (3.5×) 0.013 (3.9×)
12 layers, 2048 hidden size 238M 0.020 (0.9×) 0.020 (1.3×) 0.021 (2.0×) 0.021 (2.4×)

Table 4: Time cost (seconds) during inference for different architectures. Numbers in the parentheses
denote the speedup compared to RoBERT-base.

on par with Transformer-based baselines (77.87∼80.18). Compared with Transformer-based models,
our results on tasks such as CoLA, QQP, QNLI, and RTE exceeds DistilBERT, being close to BERT
(within average 1.0 point). Overall, our model compares well to ALBERT and BERT, retaining 99%
and 98% of the performance, respectively. For Chinese tasks, our model gives comparable results
with BERT (within 0.05 points of accuracy) and slightly better than ALBERT (78.78 vs. 77.92),
which uses the same amount of training corpus. Compared with other models which apply more
pre-training data, our model also performs well in tasks such as TNEWS and IFLYTEK.

3.4 Analysis of Efficiency
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Figure 3: Comparison between models
for computing long sequences.

We compare the inference speed of our model with dif-
ferent architectures in Table 4. ELMo gives the lowest
results as the sequential nature of RNN structure. For
Transformer-based models, DistilBERT shows the min-
imum time cost because of the lightweight architecture,
BART is slower than RoBERTa due to the nonparallel com-
putation in the decoder. All the models take much more
time when the sequence becomes much longer. For exam-
ple, sequences with a length of 512 need about 3 times
more computational time than sequences with a length
of 64. For our model, adding the recurrent layer and the
hidden size will both leads to more inference time. How-
ever, by increasing the sequence length, the inference cost
grows much slower than the baselines when the sequence
length reaches 256 or more, our model can give a 2∼3
times speedup than DistilBERT or RoBERTa, even for large model settings.

We compared our model with Transformer variants for an extra long sequence in Figure 3. Long-
former [53] and Reformer [54] give almost linear growth of runtime w.r.t sequence length. Our model
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is the fastest when the sequence length is below 8.5k. Linformer [55] and Performer [56] give slightly
faster speed when the size reaches 10k. However, the models are particularly designed for long
sequences. For example, Linformer project the full self-attention and find the low-rank representation,
reducing the complexity from O(n2) to O(nk), thus the projection dimension k should be pre-defined
and less than the sequence length n. Similarly, Performer pre-defined kernel feature numbers m and
reduce the complexity from O(n2) to O(nm), the most computational efficiency is achieved only
when n is relatively large. Overall, our model can handle both short and long sequences friendly.

4 Conclusion

We investigated a graph recurrent network for large-scale language model pre-training. Our model
does not rely on the self-attention mechanism and retaining linear computational complexity with
respect to the sequence length. Results show that the inference cost can be largely reduced while
without much accuracy loss. For future work, we will study our model for seq2seq-style pre-training
as in BART or T5, exploring the applications to generation tasks such as machine translation.
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